高级检索

    华北山区油松侧柏降雨前后水分来源

    Water sources of Pinus tabuliformis and Platycladus orientalis before and after rain in northern China

    • 摘要: 为了解褐煤基材料对土壤复合体铅形态的影响和污染退化修复机制,将褐煤以及褐煤基改性材料,混入铅污染的土壤中培养4 个月,提取其中的土壤复合体,测定各组复合体中的各形态铅。结果表明:施用褐煤基有机材料后,水稳性复合体增加。1)6 种铅化学形态在各复合体中分布状况不同。各改良剂处理的离子交换态、铁锰氧化物结合态和碳酸盐结合态铅在复合体中分布的大小顺序均为:G0 > G1 > G2,各处理从G0 到G1,交换态铅质量分数下降了8.74% ~32.22%,从G1 到G2 各处理下降了2.73% ~ 26.74%;弱有机态和强有机态、残渣态铅分布顺序为:G0 < G1 、G2 。2)施用有机材料均引起了3 组复合体中交换态铅质量分数的下降,各处理交换态铅质量分数平均下降了2.73%~32.22%;普遍提高了弱有机态和强有机态铅质量分数,弱有机态铅最高提高51.23%,强有机态铅最高提高67.65%,对残渣态铅没有显著影响。3)所有改性材料改性后均提高了G2 组中的交换态铅,普遍降低强有机态铅质量分数,碳酸盐态铅质量分数未有显著变化。因此,施用褐煤基有机改良剂,促进了水稳性复合体的形成,降低了复合体中交换态铅质量分数,对土壤铅起到了钝化作用。褐煤有机材料对交换态和有机态铅影响较大,对铁锰氧化物态、碳酸盐态和残渣态影响较小。

       

      Abstract: Background Mountains in Beijing are in an ecologically fragile area with seasonal drought; therefore, study of water source of typical tree species before and after the rain in arid areas is of great significance. Methods By taking Pinus tabulaeformis and Platycladus orientalis in mountains in Beijing as subject, we employed the hydrogen and oxygen isotope technique and measured the isotopic composition in branches of trees, soil, groundwater and rainfall in order to clarify their water source before and after the rain. Results The results showed that the soil moisture content and the isotope of the two species showed a vertical change. P. tabuliformis and P. orientalis forest soil were different in soil moisture content before rainfall. Soil moisture content in Platycladus orientalis layers was lower than that in Pinus tabulaeformis. The average soil moisture content was 7.44% and 2.17%, respectively. After the rainfall, soil moisture content in the stands of two typical species were higher than before, the average soil moisture content in the P. orientalis stand increased by 46.1% compared to that before rainfall, while it increased by 38.7% for P. tabuliformis. The intense evaporation of surface soil water caused the isotope fractionation and enrichment heavy isotopes. Decreasing with soil depth, soil water D in P. tabuliformis and P. orientalis stands showed a tendency to increase, and the heavy isotope was enriched. Different plant species had different water sources in the same season, and the same plant species had different water sources before and after the rain, showing an adaptation to their habitats. P. tabuliformis had fewer roots in urface soil, but still absorbed a high amount of topsoil water before rainfall, with a utilization rate of 36.0%; in order to obtain a stable water supply, P. tabuliformis used the developed deep roots to absorb underground water with a utilization rate of 38% and 58.2%, before and after rain, respectively. P. orientalis used deep soil water to maintain normal physiological activities, and the utilization rate was 71.2%. The lateral root in the surface layer soil of 0 -20 cm was sensitive to rainfall, and P. orientalis mainly used surface soil moisture with a utilization rate of 71.6%. Conclusions Our results have great significance for artificial afforestation, tree species configuration and alleviation of the water resource shortage in arid and semi-arid areas.

       

    /

    返回文章
    返回