高级检索

    黄丘区野外坡面土壤水分变化对次降雨过程的响应

    Response of soil moisture variation to individual rainfall on the field slope in the loessial hilly-gully region

    • 摘要: 土壤水分的垂直变化与空间变异特征对坡面降雨入渗和产流过程有重要影响。为了研究黄丘区降雨-土壤水分响应关系,在天水罗玉沟流域建立野外坡面小区,利用野外水分动态观测和人工模拟降雨试验,研究天然状态和90 mm/h降雨强度下的土壤水分变化规律。结果表明:天然状态下,土壤剖面土壤水分的垂直变化可以划分为速变层(0~20 cm)、活跃层(20~30 cm)、次活跃层(30~40 cm)和相对稳定层(40~100 cm),土壤水分的垂向分布存在分层现象,坡向分布存在显著的坡位差异(P < 0.05)。降雨过程中,降雨能明显增强土壤水分的活跃性,主要表现在0~30 cm土层范围内,随土层深度的增加,降雨对土壤水分活跃程度的影响逐渐减弱。0~30 cm土层土壤水分随降雨时间变化表现为3段式,即快速上升期、稳定期、略微下降期,深层次土壤水分在垂向的变化中表现为不均匀性,存在梯度性差异; 除0~30 cm土层外,降雨仅增加各土层中的土壤水分,对各层间土壤水分在整体土层范围中土壤水分的占比影响较小,雨中坡位间土壤水分的分布差异更为显著(P < 0.01)。随着0~30 cm土层的土壤水分含水率的增加,产流速率呈增加并趋于稳定的趋势,产沙速率的变化趋势为产沙量达到高峰后逐渐减小并趋于稳定。

       

      Abstract:
      Background The vertical variation and spatial variability of soil moisture have important effects on the process of rainfall, infiltration and runoff.
      Methods In order to study the relationship between rainfall and soil moisture response in the Loess Plateau, the vertical variation and spatial variability of soil moisture under 90 mm/h rainfall in Luoyu Valley watershed of Tianshui city was studied using dynamic monitoring and simulated rainfall method.
      Results For natural condition, the vertical change in soil moisture could be divided into four levels:the rapid change layer (0-20 cm), the active layer (20-30 cm), the second active layer (30-40 cm), and the relatively stable layer (deeper 40 cm).There was stratification in the vertical distribution of soil moisture, and the slope distribution of soil moisture had significant differences in slope position (P < 0.05). Frequent exchange of soil moisture and air was also concentrated in the 0-40 cm soil layer range. During the rainfall, the activity of soil moisture was obviously enhanced, but the influence was mainly in the range of 0-30 cm soil layer, the influence of soil moisture by rainfall was negatively correlated with the soil depth. The change of soil moisture of 0-30 cm soil layer with time was not uniform, there were 3 periods of the rapid rise period, the stable period and the slight decline period. In deeper soil layer, there was a gradient difference in the vertical variation of soil moisture. Except for the surface soil, the rainfall infiltration only increases the soil moisture of each soil layer, while the proportion of soil moisture did not change, the distribution of soil moisture in the slope was more significant(P < 0.01). With the increase of soil moisture of 0-30 cm soil layer, the runoff rate showed the trend of increase to a stable value. The sediment yield rate increased to a peak value, and then decreased, became stable gradually.
      Conclusions  The research of the relationship between rainfall and soil moisture played an important role in explaining the redistribution of soil moisture and the migration of organic matter, and provided scientific basis and theoretical guidance for efficient utilization of water resources and vegetation restoration and ecological reconstruction in hilly-gully region of Loess Plateau.

       

    /

    返回文章
    返回