Abstract:
Background Soil moisture is not only an important component of eco-hydrological process and material energy cycle, but also a key factor limits the plant growth and vegetation reconstruction in arid and semi-arid areas. Quantifying the spatial variability of soil moisture and assessing the main influencing factors provide important references for regional ecosystem restoration and agricultural production.
Methods In the late growing season of 2020, a soil moisture survey with 141 samples in 200 cm thicknesswas carried out by the soil drilling method, in the Zhongzhuang small watershed, a loess hilly region of southern Ningxia. Soil moisture content (SMC) was measured in 20 cm per layer, and the effects of land use, vegetation coverage, plant species, slope gradient, slope aspect, and slope position on soil moisture were analyzed through classical statistical methods.
Results The SMC firstly decreased then stabilized with the soil layer deepening, with the slope gradient rising, with the slope direction changing from the north-faced to the south-faced, and with the slope position moving from the bottom to the up. The degree of SMC variation was lighter in 0-100 cm than in 100-200 cm. According to a principal component analysis, 65.05% of SMC variation could be well explained by the slope position, vegetation coverage, land use, etc. The SMC in 5 land uses were ordered as secondary forest> flat field> terraced field> wasteland> artificial forest. The 80-200 cm SMC in artificial forest, Medicago sativa, Caragana korshinskii, H. rhamnoides were significantly lower than in other land uses. With the vegetation coverage increasing, the 0-60 cm SMC gradually increased, whereas the 60-200 cm SMC gradually decreased.
Conclusions In general, lower SMC occursin vegetation types such as M.sativa, C.korshinskii, H.rhamnoides and site conditions such as upslope, sunny slope, and steep slope. When optimizing and adjusting the vegetation structure in the watershed, attentions should be paid to the comprehensive influence of topographical factors and vegetation characteristics.