高级检索

    生态建设对洪水要素过程影响研究进展

    Research progress in the impact of ecological construction on flood factor process

    • 摘要: 生态建设活动通过调控下垫面条件改变截留、入渗、地表糙度等水文参数,显著影响区域生态水文过程。揭示生态水文过程对洪涝灾害的调控机制是坡面−河道系统协同治理中实现流域洪水风险管控的关键。笔者从生态水文作用机制角度剖析生态建设对洪水要素的影响过程,从水文统计、室内外试验、模型模拟分析等方面综合分析归纳土地利用/地表覆被变化的水文响应研究方法,最后总结讨论当前对植被调洪减灾作用的基本认识。结果表明:生态建设可以加速改变影响水文过程的植被状况、土壤条件和地形条件,强化对洪水要素过程的影响,但是植被削峰滞洪效果受植被−土壤系统内在生境条件和区域气候条件及流域本底状况等外部因素的综合影响。同时,各类传统研究方法各有优劣,应结合研究目标和适用场景进行选取。此外,传统研究多关注流域土地利用格局对洪水的影响,而从植被−土壤系统结构、功能的角度研究坡面生态系统韧性提升对洪水要素过程影响较少;缺少生态建设对洪水的调节能力评价和对洪涝灾害风险影响的定量评估方法。对此领域的未来研究建议为:深化植被−土壤生态系统对洪水的影响机理研究;建立坡面单元韧性评价体系,量化生态系统结构−功能协调作用对洪水的调节阈值;发展生态调节能力与灾害风险的多尺度定量评估方法,为流域生态防洪系统构建提供理论技术支撑。

       

      Abstract:
      Background Ecological construction activities significantly influence regional eco-hydrological processes by modifying underlying surface conditions, thereby altering hydrological parameters such as interception, infiltration, and surface roughness. Understanding the regulatory mechanisms of eco-hydrological processes on flood hazards is critical for implementing integrated flood risk management and ecological conservation within a hillslope-channel system framework.
      Methods This study analyzed the impact mechanisms of ecological construction on flood elements from an eco-hydrological perspective, synthesizes hydrological response research methodologies, including hydrological statistics, laboratory/field experiments, and model simulations, for land use/cover changes, and summarizes current knowledge on vegetation-mediated flood mitigation.
      Results 1) Ecological construction accelerates changes in vegetation characteristics, soil properties, and terrain conditions, intensifying their effects on flood processes. However, vegetation-driven flood peak attenuation and flow retardation are synergistically influenced by intrinsic habitat conditions (vegetation-soil system structure) and external factors (regional climate patterns and watershed baseline characteristics). 2) Conventional research methods show distinct advantages and limitations: Hydrological statistics reveal macro-scale patterns but lack process resolution, experimental approaches quantify single-factor impacts yet suffer from scale constraints, while model simulations enable systematic analysis but face challenges in parameter heterogeneity characterization. 3) Existing studies predominantly focus on watershed-scale land use patterns, with limited exploration of hillslope ecosystem resilience enhancement through vegetation-soil structural-functional optimization. Quantitative evaluation frameworks for ecological flood regulation capacity and disaster risk impacts remain underdeveloped.
      Conclusions Future research should prioritize three directions: i) advancing mechanistic understanding of vegetation-soil interactions under extreme hydrological events; ii) establishing hillslope resilience assessment systems to quantify structural-functional thresholds for flood regulation; and iii) developing multiscale quantitative methods to evaluate ecological regulation capacities and disaster risks, thereby providing theoretical and technical foundations for watershed-scale ecological flood control systems.

       

    /

    返回文章
    返回