Abstract:
Background The Loess Plateau of China is one of the most eroded areas in the world. The slope-gully system as a basic erosion unit in this area is not only a sediment source for the whole watershed, but also the key part in implementing soil and water conservation measures. Understanding the underlying erosion processes on the slope-gully system will provide more efficient strategies to implement effective soil and water countermeasures for protecting rare land resources and ecological environment. Since 1980, some soil and water conservation measures have been implemented in this area. Land use and vegetation cover have changed greatly, and which have deeply affected the process of rainfall, runoff, sediment production and sediment transport.
Methods With the aid of Web of Science and CNKI, we collected over 60 classical papers based on the keywords of "slope-gully system" or "relationship between slope and gully" and conducted a literature review. For the papers published before 1999(large-scale "Grain for Green project" implemented), the erosion patterns, sediment sources and impacts of upland incoming flow on erosion of slope-gully system were summarized; and the for the papers after 1999, the effects of revegetation on erosion of slope-gully system were emphatically analyzed. The future research highlight was also pointed out based on the above analysis.
Results 1) Great progresses have been achieved in understanding the impacts of vegetation recovery on slope-gully erosion system on the Loess Plateau in recent years. The vertical erosion distribution zone of slope-gully system has been widely recognized and the identification of sediment source indicated that inner-gully area produced more sediment for most circumstances. 2) Various vegetation patterns on the slope changed runoff hydraulic parameters and the incoming runoff amount and sediment concentration for the gully slope, which altered the erosion patterns of downslope and sediment yield of the whole system. 3) Due to the complexity of vegetation patterns and insufficient data, it is difficult to quantify upslope runoff and sediment impacts on downslope erosion process under different vegetation patterns conditions.
Conclusions Focusing on the mutual influence and constrains of vegetation patterns and soil erosion process, more simulation and outdoor experiments should be carried out to obtain suitable parameter to illustrate the impacts of vegetation pattern on soil erosion and establish a prediction model combined vegetation patterns and soil erosion process at slope-gully system. This will deepen the relationship between vegetation pattern and soil erosion on the slope-gully system and be the future hotspot.